Campus C 6.3
Saarbrücken D-66123
Tel: +49 681 302 57453
Fax: +49 681 302 57454


Contact Mechanics

On the linearity of contact area and reduced pressure

Martin H. Müser,
On the linearity of contact area and reduced pressure
Tribol. Lett. 65, 129 (2017).

DOI: 10.1007/s11249-017-0912-y. (view only)
(accepted version).



Gauging Persson theory on adhesion

Anle Wang and Martin H. Müser,
Gauging Persson theory on adhesion
Tribol. Lett. 65, 103 (2017).
(accepted version)
DOI: 10.3390/10.1007/s11249-017-0886-9.
Free access: http://rdcu.be/tOCy



Contact-mechanics-modeling challenge

Martin H. Müser, Wolf B. Dapp, Romain Bugnicourt et al,
Meeting the contact-mechanics challenge
Tribol. Lett. 65, 118 (2017).
(submitted version)
Open access: http://rdcu.be/u24g
DOI: 10.1007/s11249-017-0900-2



GFDD

Syam P. Venugopalan, Martin H. Müser and Lucia Nicola
Green’s function molecular dynamics meets discrete dislocation plasticity
Model. Simul. Mater. Sc. Eng. (submitted). (submitted version)



GFMD – finite height and shear

S. P. Venugopalan, Martin H. Müser and Lucia Nicola
Green’s function molecular dynamics: Including fi nite heights, shear, and body fields
Model. Simul. Mater. Sc. Eng. (accepted).

(accepted version)



Contact mechanics of thin, elastic sheets

Carmine Putignano, Wolf B. Dapp and Martin H. Müser,
A Green’s Function Molecular Dynamics Approach to the Mechanical Contact between Thin Elastic Sheets and Randomly Rough Surfaces
Biomimetics 1, 7 (2016)
DOI: 10.3390/biomimetics1010007.



Nominally flat Hertzian contacts

Martin H. Müser,
On the contact area of nominally flat Hertzian contacts,
Tribol. Lett. 64, 14 (2016). (submitted version)
DOI: 10.1007/s11249-016-0750-3



Leakage near percolation

Wolf B. Dapp and Martin H. Müser,
Fluid leakage near the percolation threshold,
Sci. Rep. 6, 19513 (2016).
DOI: 110.1038/srep19513.
http://arxiv.org/abs/1512.00186 (submitted version).



Dimensionless measure for adhesion

Martin H. Müser,
A dimensionless measure for adhesion and effects of the range of adhesion
in contacts of nominally flat surfaces
,
Tribol. Int. 100, 41–47 (2016)
DOI: 10.1016/j.triboint.2015.11.010.



Critical constrictions

Wolf B. Dapp and Martin H. Müser,
Contact mechanics of and Reynolds flow through saddle points,
EPL 109, 44001 (2015).
DOI: 10.1209/0295-5075/109/44001



Test of Persson Theory

Wolf B. Dapp, Nikolay Prodanov, and Martin H. Müser,
Systematic analysis of Persson’s contact mechanics theory of randomly rough elastic surfaces,
J. Phys. Condens Matt. 26, 355002 (2014).
DOI: 10.1088/0953-8984/26/35/355002
(accepted version).



Single-asperity contact mechanics

Martin H. Müser,
Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids,
Beilstein J. Nanotech. 5, 419-437 (2014).
(accepted version)
Open access: http://www.beilstein-journals.org/bjnano/content/5/1/50



Layering of ionic liquids

Judith Hoth, Florian Hausen, Martin H. Müser, and Roland Bennewitz,
Force microscopy of layering and friction in an ionic liquid ,
J. Phys.: Condens. Matt. 26, 284110 (2014).
(accepted version)
DOI: 10.1088/0953-8984/26/28/284110



Contact area and mean gap

Nikolay Prodanov, Wolf. B. Dapp, and Martin H. Müser,
On the contact area and mean gap of rough, elastic contacts:
Dimensional analysis, numerical corrections and reference data
,
Tribol. Lett. 53, 433–448 (2014).
DOI: 10.1007/s11249-013-0282-z,
arxiv: http://arxiv.org/abs/1311.7547.



Finite-size effects in contacts between self-affine surfaces

L. Pastewka, N. Prodanov, B. Lorenz, M. H. Müser, M. O. Robbins, and B. N. J. Persson,
Finite-size effect in the interfacial stiffness of rough elastic contacts,
Phys. Rev. E 87, 062809 (2013); (accepted version).
DOI: 10.1103/PhysRevE.87.062809



Contact mechanics of LST surfaces

N. Prodanov, C. Gachot, A. Rosenkranz,  F. Mücklich, and M. H. Müser,
Contact mechanics of laser-textured surfaces,
Tribol. Lett. 50, 41-48 (2013); (accepted version).
DOI: 10.1007/s11249-012-0064-z



Friction between laser-patterned surfaces

C. Gachot, A. Rosenkranz, L. Reinert, E. Ramos-Moore, N. Souza, M. H. Müser and F. Mücklich,
Dry friction between laser-patterned surfaces: Role of alignment, structural wavelength and surface chemistry,
Tribol. Lett. 49, 193-202 (2013); (accepted version).
DOI: 10.1007/s11249-012-0057-y



Contact percolation and leakage

W. B. Dapp, A. Lücke, B. N. J. Persson, and M. H. Müser,
Self-affine elastic contacts: percolation and leakage
Phys. Rev. Lett. 108, 244301 (2012); (accepted version).
DOI: 10.1103/PhysRevLett.108.244301



Cuts through self-affine surfaces

S. B. Ramisetti, C. Campana, G. Anciaux, J.-F. Molinari, M. H. Müser, and M. O. Robbins,
Autocorrelation functions for contour cuts through self-affine surfaces,
J. Phys.: Condens. Matt.  23 215004 (2011); (submitted version). DOI: http://dx.doi.org/10.1088/0953-8984/23/21/215004



Transverse interfacial stiffness

C. Campana, B. N. J. Persson, and M. H. Müser,
Transverse and normal interfacial stiffness of solids with randomly rough surfaces,
J. Phys.: Condens. Matter 23, 085001 (2011) (accepted version).
DOI information: stacks.iop.org/JPhysCM/23/085001.



Implementation of Green’s function molecular dynamics: an extension to LAMMPS

L. T. Kong, G. Bartels, C. Campana, C. Denniston, and M. H. Müser,
Implementation of Green’s function molecular dynamics: an extension to LAMMPS,
Comput. Phys. Comm. 180, 1004-1010 (2009); ( submitted version),
DOI information: 10.1016/j.cpc.2008.12.035.



Elastic contact between self-affine surfaces

C. Campana, M. H. Müser, and M. O. Robbins,
Elastic contact between self-affine surfaces: Comparison of numerical stress and contact correlation fucntions with analytic predictions,
J. Phys.: Condens. Matter 20, 354013 (2008). Download preprint or http://arXiv.org/abs/0804.0062, DOI: 10.1088/0953-8984/20/35/354013



A rigorous, field-theoretical approach to the contact mechanics of rough, elastic solids

M. H. Müser,
A rigorous, field-theoretical approach to the contact mechanics of rough, elastic solids,
Phys. Rev. Lett. 100, 055504 (2008), accepted version, mathematical appendix.



Elucidating the contact mechanics of aluminum silicon surfaces with Green’s function molecular dynamics

C. Campana, M. H. Müser, C. Denniston, Y. Qi, and T. A. Perry,
Elucidating the contact mechanics of aluminum silicon surfaces with Green’s function molecular dynamics,
J. Appl. Phys. 102, 113511 (2007) accepted version.



Contact mechanics of real vs. randomly rough surfaces

C. Campana and M. H. Müser,
Contact mechanics of real vs. randomly rough surfaces: A Green’s function molecular dynamics study,
Europhys. Lett. 77, 38005 (2007) (accepted version).



Practical Green’s function approach to the simulation of elastic, semi-infinite solids

C. Campana and M. H. Müser,
Practical Green’s function approach to the simulation of elastic, semi-infinite solids,
Phys. Rev. B 74, 075420 (2006) (accepted version).
selected for VJ Nanoscale Sci. & Technol., Vol. 14, Issue 10, 2006.